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1. I N T R O D U C T I O N  

Continuum mixture theories provide a convenient and general mathematical structure in which one 
can describe the rheological behavior of multiphase flows. The quintessential feature of this 
approach assumes that each material phase may be modeled as an interacting continuum. In the 
case of particulate suspensions, we associate the dispersed particles with a "fluid-like" continuum, 
herein referred to as a solid phase; the notion of a solid-phase continuum facilitates the construction 
of appropriate constitutive models. A quantity that has been difficult to conceptualize, and yet 
arises quite naturally from the mathematical formalisms in dealing with these flows, is an isotropic 
pressure assigned to the solid phase. 

The notion of a solid-phase pressure has received considerable attention in the literature with 
regard to its physical meaning as well as its mathematical necessity. In many cases, the solid-phase 
pressure has been described in terms of the physics of the multiphase flow process. In section 2, 
we give a succinct description of the various models that have been used in the past to denote the 
solid-phase pressure. Even this partial listing serves to illustrate the diversity in which the idea of 
a solid-phase pressure has been conceived. 

In the present communication, we seek a quantitative description for the solid-phase pressure 
during the slow, steady flow of a dilute, monodisperse suspension of spherical particles. We 
consider the macroscopic motion of the suspension to be dominated by viscous forces, however, 
we assume that the local inertia of the fluid in the vicinity of the particle will give rise to lift and 
"inertially corrected" drag forces. To be consistent, then, the expression for the solid-phase pressure 
must account for the local inertia of the fluid. In sum, we view the solid-phase pressure to be an 
average of the disturbance pressure in the vicinity of a single, spherical particle. 

It can be shown that the disturbance pressure field surrounding a particle is due to the relative 
velocity between the particle and the fluid. We consider the effects of the local fluid inertia for this 
problem based upon the matched asymptotic analysis of Chester & Breach (1969). In section 3, 
we calculate the disturbance pressure for uniform, streaming flow past a sphere to obtain an 
insightful interpretation for the solid-phase pressure. Thus, a consistent definition of the solid-phase 
pressure is proposed for the class of two-phase flows considered here. The implications of this form 
for the solid-phase pressure, in view of the two-phase flow equations are discussed. 

2. THE OCCURRENCE OF AN INTERFACE PRESSURE 
IN MIXTURE THEORIES 

The behavior of multiphase material systems may be described mathematically by writing 
continuum balance laws of mass, momentum and energy for each constituent phase. The details 
of this particular approach in modeling multiphase flows may be found in the work of Drew & 
Segel (1971), Ishii (1975) and Passman et al. (1984). A significant asset of this approach is the 
general framework upon which a variety of-two-phase flow models may be constructed. Classical 
mixture theories assume that the constituents are so intimately intermixed that all phases are 
ubiquitous in space. The discrete nature of the phases is maintained, however, by assigning separate 
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velocity and volume fraction fields to each phase. Within this mathematical structure each phase 
may interact with other phases and/or any physical boundaries. In the most general sense, this 
interaction may be in the form of momentum and energy exchanges between the phases. The precise 
nature of the phase interactions is provided via proper constitutive equations. In most cases, the 
interaction phenomena between the phases, for disperse, dilute mixtures, can be derived from local 
hydrodynamic analyses of single-particle motions. The drag force between phases, for example, is 
in part due to the Stokes resistance experienced, say, by a settling sphere. For the ensuing discussion 
we shall consider only isothermal, chemically inert mixtures such that the rheological behavior is 
derived by statements of conservation of mass and momentum for each phase. Furthermore. for 
definiteness we restrict our attention to disperse, two-phase systems in contrast to separated or 
transitory two-phase flows categorized by Ishii (1975). 

For a saturated fluid-particle mixture, the momentum equation which governs the motion of 
the solid phase has been written by McTigue et  al. (1986) as 

" A d p , \ e  t +v~.Vv, =-~b~Vp~+m?+o/~dp, b~-(p , -pf)VqS~,  Ill 

where '/~ is the particle density, qS~ is the volume fraction of solid particles, v, is the solid velocity, 
p, and pf are the phase pressures, b~ is the body force and ms- denotes the interaction forces of lift 
and drag acting between the phases.+ 

The last term in [1] describes a contribution to the momentum equation arising from pressure 
differences between the two phases.+ + This disparity of pressures has been attributed to the existence 
of an "interface pressure" and will be referred to as such hereafter. Written in this form, and 
assuming tentatively that p~ > pf, it is apparent that the interface pressure is diffusive inasmuch as 
it can be shown that it leads to a homogenizing of  the particle concentration field: local increases 
in particle concentration produce a momentum flux which opposes the concentration gradient. This 
feature of the continuum model is consistent with experimental observations by Segr6 & Sitberberg 
(1962), who report diffuse particle concentrations across the tube diameter. 

The model, two-phase mixture equations require an additional equation to formally close the 
equation set. The traditional approach has been to propose a constitutive equation among the 
nonkinematically related variables (i.e. pf and p~). Previous investigators, when confronted with the 
explanation of a solid-phase pressure and the associated proposition of a constitutive model, have 
resorted to a variety of approaches. We contend that any proposed interpretation of the interface 
pressure should be related ultimately to the physical nature of the particular two-phase system 
under consideration. We review some of the ideas advanced in the past to characterize the interface 
pressure. 

The simplest assumption one could make concerning the closure equation for the phase pressure 
difference is to assume equal pressures. In this case, the model equations for the two-phase flow 
system retain only one independent pressure field. Stuhmiller (1977) has shown that this assumption 
leads to instabilities for initial-value problems in flows where the phase velocities are not equal. 
Of course, these flows are usually the ones of most interest. The instabilities are a result of complex 
characteristic roots imparted to the fundamental equation set by assuming equal pressures. The 
case of equal pressures between phases has also been observed to preclude unique solutions for 
nonuniform particle distributions in slow flows of dilute suspensions between parallel plates 
(McTigue et  al. 1986). In particular, one will note from [1] that if p, = pf, the highest order deriv- 
ative in the solid-phase volume fraction is lost. Furthermore, it can be shown that [1] becomes 
totally independent of the volume fraction under certain constitutive assumptions appropriate for 
dilute suspensions.§ Thus, questions of uniqueness of  solution for the volume fraction arise. 

To improve upon the constitutive equation for the interface pressure, one must consider the 
physical nature of the flow process. For the case of a particulate phase of spherical particles 

+One interpretation of the interaction forces, m~ +, which include the effects of local fluid inertia, is ~en  by McTigue 
et al. (1986). These forces acting on the dispersed phase have been generalized from analyses for the flow around 
a single particle. 

~It is easily shown that there is no corresponding contribution to the fluid-phase momentum equation from pressure 
differences between phases. Hence, we use only the solid-phase momentum equation for illustration. 

§Specifically, ms* is a linear function of the volume fraction (McTigue et al. 1986). 
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suspended in a fluid, Stuhmiller (1977) and Prosperetti & Jones (1984) have investigated the local 
flow in the vicinity of an isolated sphere, .where their interpretations of the interface pressure 
account for the local inertia of the flow. By considering the flow of an inviscM fluid around a sphere, 
Prosperetti & Jones (1984) have proposed the following form for the pressure difference: 

1 
P~ - Pr = - ~  7f(Vr- v~):. [2] 

The interesting feature here is that the solid-phase pressure due to the presence of the particles is 
less than the bulk fluid pressure. It can be shown that this assumption will lead one to calculate 
particle concentration profiles which contradict experimental observations for: 2-D, Poiseuille flow 
of a dilute suspension. In particular, one may note from a manipulation of [1] that the pressure 
difference given here by [2] leads to a force which produces a particle flux in the direction of 
increasing particle concentration gradient. This result is both antidiffusive and nonphysical. 

When the suspended particles are small enough for Brownian motion to become important, 
Drew (1976) and Nunziato (1983) have shown that the interface presure is diffusive and related 
to the derivative of a thermodynamic potential. These ideas are consistent with the notion of a 
"Brownian stress", as defined by Batchelor (1976). The random motion of the particles due to 
collisions with the fluid molecules gives rise to a diffusive force which acts to homogenize particle 
concentrations. In this instance, the interface pressure is given by the expression 

3xff 
P~ - Pr "~ 4rca 3 , [3] 

where x is Boltzmann's constant, ~ is the absolute temperature and a is the particle radius. It is 
noted from [3] that, for two-phase systems consisting of small particles, the interface pressure 
increases, respectively, with increasing temperature and decreasing particle size. 

As a final example, when the dispersed, solid-phase concentration exceeds the dilute limit, 
particle-particle interactions become important, say, in the case of fluidized beds. To model these 
flows with multiphase mixture theories, several researchers have either defined (Homsy et al. 1980), 
or implied tacitly (Anderson & Jackson 1967), the concept of a "collision" pressure to account for 
the elastic interactions between the particles. These effects are significant if the bed is less than fully 
fluidized. In other related work (Stiehadieh et al. 1984), we find similar expressions for the interface 
pressure which attempt to model particle contact forces for nondilute concentrations of 
suspensions. 

In the cases cited here and others as well, the constitutive equations for the interface pressure 
have been postulated based on the physics of the flow. Many of these models embody the 
interaction physics of a single particle with the suspending fluid. We adopt a similar strategy in 
the next section to offer an explanation for the interface pressure evolving from the slow flow of 
a dilute suspension of spherical particles. 

3. THE FLOW FIELD IN THE VICINITY OF AN ISOLATED SPHERE 

For the case of a dilute suspension of monodisperse, spherical particles undergoing slow, steady 
flow, we propose a formula for and offer physical insight toward the notion of the solid-phase 
pressure. Inertial effects of the macroscopic motion of the suspension are neglected, however, the 
deliberate indication of "slow flow" implies that local fluid inertia is important on a length scale 
compared to the particle diameter. It can be shown (Ho & Leal 1974) that local inertial effects are 
responsible for lateral particle migrations in bounded shearing flows of the type considered here. 
Our motivation emanates from the need to develop a suitable expression for the interface pressure 
in processing-type flows of dilute suspensions. 

If the suspension is dilute, as assumed, we cannot elicit any contribution to the solid-phase 
pressure from particle interaction forces. Therefore, we postulate that the solid-phase pressure must 
be due to the local disturbance field created by the relative motion between a single particle and 
the fluid. Intuition suggests (Nunziato 1983) that for the class of flows considered herein the 
functional form of the pressure difference r/aust include the effect of local fluid inertia, such that 

Ps - Pr = c07r(vf - vs)-', [4] 
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where c o is a constant, 7r is the mass density of the fluid and (vf - vs) is the difference between the 
velocity of the undisturbed fluid motion and that of the particle. Relative motion between the 
dispersed particulate phase and the suspending fluid can be due to density differences between the 
constituents, as given by Stokes settling, the correction to the particle drag force given by Fax6n 
(1922) and/or lift forces which act transversely to the undisturbed fluid streamlines. Here, we seek 
to justify mathematically the functional form given by [4] as well as identify the coefficient co. 
Toward this end, we seek to calculate the average disturbance pressure field due to uniform flow 
past a spherical particle.t 

This problem has received widespread attention in the literature and we cite for our purpose here 
some results of earlier work. A consistent approximation to the Navier-Stokes equations for the 
slow flow around a sphere, for small Reynolds numbers, Re, has been given initially by Proudman 
& Pearson (1957) and later extended by Chester & Breach (1969). Here, Re is given by yraU/#c, 
based upon the particle radius, a, and the uniform streaming velocity, U. Each of these 
investigations used the method of matched asymptotic expansions to obtain a solution for the flow 
field which is uniformly valid both near and far from the particle. 

Of specific relevance for our calculations of  the interface pressure is a description of the local 
fluid pressure on the surface of the spherical particle. This relation is given in the paper by Chester 
& Breach (1969, [6.7]), and is written here for convenience. The reader is directed to the original 
paper for the details leading to the derivation of the equation, 

P-Pc= J \c-=rTr3],=t sin0 '  [5] 

where g, is the normalized stream function of the inner expansion and r is the normalized radial 
coordinate. The pressure difference in [5] has been normalized by the quantity/4" U/a and vanishes 
far from the body. Through terms of order Re, 

~, = ¢'0 + R e O l  + . . . .  [6] 

0 0 = ~  2 r - - 3 r +  sin 20 [7] 

and 

[]'/I = 2r 2 -- 3r + r sin'- 0 -- 2r: - 3r + 1 -- - + cos 0 sin 2 0. [8] 
r 

The origin of the spherical polar coordinate system (r, 0, ~b), is fixed at the center of the particle 
and the polar angle, 0, is measured anticlockwise with respect to the uniform streaming fluid 
velocity. From [5], we obtain 

[ 3 ( 3 )  27 1 P - P r =  -97 l + g R e  c o s 0 + ~ - ~ R e c o s  20 +O (Re- ' l o g Re) .  [9] 

The first two terms on the r.h.s, of  [9] coincide with the pressure field calculated from the Stokes 
expansion, while the third term accounts for the influence of inertia which finds its way into the 
inner expansion through the process of  matching near and far field solutions in the overlap region. 

We define the solid-phase pressure in the continuum sense to be, in part, the average pressure 
experienced by a single particle and derived from the local disturbance pressure field. It follows 
that this inertial correction may be obtained by integrating [9] over the particle surface, fl, 

, j  9 ps-pr=-~ (p - p r )  d ~  = Re + O (Re2). [10] 

It is interesting to note that while the first two terms on the r.h.s, of  [9] contribute to the drag 
they do not contribute to the integral of the fluid pressure over the particle surface given by [10]. 
It is the third term in [9], which is an even function in 0, that contributes to the interfacial pressure 
through terms of order Re. This term is the first correction to the flow field close to the particle 

tOne could alternatively consider the case of a slow, uniform translation of the sphere through a quiescent, viscous 
liquid. The solution of this related problem differs from the one considered here only by a uniform streaming motion 
of the fluid. The local disturbance pressure field enveloping the body is the same for either case. 



BRIEF COMMUNICATION 721 

from inertia. The next correction to the interface pressure, as shown in [10], will be order Re: since 
the intermediate term Re: log Re from the analysis by Chester & Breach (1969) does contribute 
to the drag but not to the averaged interface pressure. 

Finally, from [4] and [10] we may write the dimensional form for the solid-phase pressure as 

9 
P~ = P" + ~2 "/r(vf - v~)2' [11] 

4. CONCLUSIONS 

We have shown that, for the slow flow of a dilute suspension, one contribution to the pressure 
assigned to the dispersed particles may be calculated based upon the local fluid inertia. The 
interpretation given here for the solid-phase pressure is derived from the local disturbance pressure 
field in the suspending fluid due to the relative motion between the particles and the fluid. In the 
case of zero relative motion between the phases, the inertial correction to the solid-phase pressure 
vanishes. We note that this interpretation of the solid-phase pressure is intimately associated with 
the flow process and is therefore physically motivated. 

The solid-phase pressure, as shown in this paper, is a dynamic effect and exceeds the fluid-phase 
pressure by an inertial correction. The interface pressure, Ps -Pf ,  is diffusive in nature inasmuch 
as local fluid inertia will homogenize particle concentration distributions. This follows from the 
fact that ps > pf, which produces a solid momentum flux in the direction opposite to increasing 
concentration gradients. Therefore, a diffusive interface pressure is one mechanism by which 
particle concentrations become more homogeneous in flows where the local fluid inertia is 
important. 
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